Quantum Hamiltonians with quasi-ballistic dynamics and point spectrum

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Hamiltonians with Quasi-ballistic Dynamics and Point Spectrum

Consider the family of Schrödinger operators (and also its Dirac version) on l(Z) or l(N) H W ω,S = ∆+ λF (S n ω) +W, ω ∈ Ω, where S is a transformation on (compact metric) Ω, F a real Lipschitz function and W a (sufficiently fast) power-decaying perturbation. Under certain conditions it is shown that H ω,S presents quasi-ballistic dynamics for ω in a dense Gδ set. Applications include potentia...

متن کامل

On quantum integrability and Hamiltonians with pure point spectrum

We prove that any n-dimensional Hamiltonian operator with pure point spectrum is completely integrable via self-adjoint first integrals. Furthermore, we establish that given any closed set Σ ⊂ R there exists an integrable n-dimensional Hamiltonian which realizes it as its spectrum. We develop several applications of these results and discuss their implications in the general framework of quantu...

متن کامل

Weakly Regular Floquet Hamiltonians with Pure Point Spectrum

We study the Floquet Hamiltonian −i∂t + H + V (ωt), acting in L([ 0, T ],H, dt), as depending on the parameter ω = 2π/T . We assume that the spectrum of H in H is discrete, Spec(H) = {hm}m=1, but possibly degenerate, and that t 7→ V (t) ∈ B(H) is a 2π-periodic function with values in the space of Hermitian operators on H. Let J > 0 and set Ω0 = [ 89J, 98J ]. Suppose that for some σ > 0 it holds...

متن کامل

Fixed-Point Hamiltonians in Quantum Mechanics

The basis of the renormalization group invariance of quantum mechanics is given through the concept of fixed-point Hamiltonians. We apply this concept to formulate renormalized Hamiltonians in quantum mechanics, for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). The proposed scheme relies on a renormalized form of ...

متن کامل

Quantum Dynamical Systems with Quasi–Discrete Spectrum

We study totally ergodic quantum dynamical systems with quasi–discrete spectrum. We investigate the classification problem for such systems in terms of algebraic invariants. The results are noncommutative analogs of (a part of) the theory of Abramov. Supported in part by the National Science Foundation under grant DMS–9801612

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2007

ISSN: 0022-0396

DOI: 10.1016/j.jde.2006.12.017