Quantum Hamiltonians with quasi-ballistic dynamics and point spectrum
نویسندگان
چکیده
منابع مشابه
Quantum Hamiltonians with Quasi-ballistic Dynamics and Point Spectrum
Consider the family of Schrödinger operators (and also its Dirac version) on l(Z) or l(N) H W ω,S = ∆+ λF (S n ω) +W, ω ∈ Ω, where S is a transformation on (compact metric) Ω, F a real Lipschitz function and W a (sufficiently fast) power-decaying perturbation. Under certain conditions it is shown that H ω,S presents quasi-ballistic dynamics for ω in a dense Gδ set. Applications include potentia...
متن کاملOn quantum integrability and Hamiltonians with pure point spectrum
We prove that any n-dimensional Hamiltonian operator with pure point spectrum is completely integrable via self-adjoint first integrals. Furthermore, we establish that given any closed set Σ ⊂ R there exists an integrable n-dimensional Hamiltonian which realizes it as its spectrum. We develop several applications of these results and discuss their implications in the general framework of quantu...
متن کاملWeakly Regular Floquet Hamiltonians with Pure Point Spectrum
We study the Floquet Hamiltonian −i∂t + H + V (ωt), acting in L([ 0, T ],H, dt), as depending on the parameter ω = 2π/T . We assume that the spectrum of H in H is discrete, Spec(H) = {hm}m=1, but possibly degenerate, and that t 7→ V (t) ∈ B(H) is a 2π-periodic function with values in the space of Hermitian operators on H. Let J > 0 and set Ω0 = [ 89J, 98J ]. Suppose that for some σ > 0 it holds...
متن کاملFixed-Point Hamiltonians in Quantum Mechanics
The basis of the renormalization group invariance of quantum mechanics is given through the concept of fixed-point Hamiltonians. We apply this concept to formulate renormalized Hamiltonians in quantum mechanics, for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). The proposed scheme relies on a renormalized form of ...
متن کاملQuantum Dynamical Systems with Quasi–Discrete Spectrum
We study totally ergodic quantum dynamical systems with quasi–discrete spectrum. We investigate the classification problem for such systems in terms of algebraic invariants. The results are noncommutative analogs of (a part of) the theory of Abramov. Supported in part by the National Science Foundation under grant DMS–9801612
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2007
ISSN: 0022-0396
DOI: 10.1016/j.jde.2006.12.017